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Abstract: The uncertainty surrounding climate change is a major obstacle facing the sustainable management
of water resources in Australia. We describe a modelling system built to analyse the risk of climate change
using results obtained from water resource modelling of the Macquarie River catchment in NSW. Scenarios
of climate change in 2030 and 2070, selected from the outputs of nine climate models, were used to perturb a
long-term historical daily climate of rainfall (P) and potential evaporation (Ep). Relationships for 8P and SEp
with water storage, Macquarie Marsh environmental flows and irrigation allocations were established and

irrigation allocation and environmental flows were

probability distribution functions (PDFs) constructed using Monte Carlo sampling. Critical thresholds for

established. Decadal variability affecting rainfall was also

investigated and found to vary baseline results by +20% from the long-term mean. These critical thresholds
are exceeded if streamflow reduces from the long-term mean by >10% in a drought-dominated climate, >20%
in a normal climate and >30% in a flood-dominated climate. Uncertainty analysis shows that global warming
provides 25% of total uncertainty due to climate change, rainfall change contributes 64% and potential

evaporation change contributes 12%. Understanding climate change in terms of local rainfall change will

contribute significantly to narrowing uncertainty. However, Bayesian analysis shows that the risk of threshold
exceedance is little changed after altering the input assumptions for rainfall or global warming that either
expand uncertainty or alter its prior distribution. The most likely changes to mean annual Burrendong Dam
storage, Macquarie Marsh inflows and irrigation allocations are 0% to —15% in 2030 and —0% to —35% in
2070. Flow increases have only a 5% probability of occurring in 2030 and 2070 under most assumptions. In
2030, under a drought-dominated rainfall regime, the risk of critical threshold exceedance occurs in 20-30%

of climates. This risk decreases to <1% in a normal climate and to <<1% in a flood-dominated climate. In

2070, these risks of exceedance are 70-80%, 35-50% and 10-20%. Considerable hardship would be
experienced before these thresholds are crossed. The most optimal strategies are hedging risk through the
preparation of adaptation strategies to manage the most likely range of outcomes, and monitoring climate to
determine whether changes are likely to result in critical threshold exceedance.
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1. INTRODUCTION

Assessing the risk of climate change requires
knowledge of the likelihoods of both climate
change and of its consequences. Within climate
change studies, high uncertainty requires the use of
scenarios that are plausible but have no probability
attached [Carter and La Rovere, 2001]. For
example, if greenhouse gas emission scenarios and
climate change scenarios are plausible with no
further likelihood, then the consequences of those
scenarios in terms of impacts have the same
limitations. This leads to a growing cascade of
uncertainties  associated ~with 2 chain of
consequences limited by the least predictable link
[Jones, 2000].

However, although individual scenarios have no
probability, they define a population that does have
a probability distribution, which is unknown. By
understanding how the component ranges of
uncertainty contribute to the range of outcomes,
and how different formulations of those component
uncertainties affect its probability distribution, we
can determine which assumptions are robust and
which are sensitive.

The water sector has postponed adaptation due to
climate change uncertainty. Although there is wide
acceptance that water resources are sensitive to
climate change, managers have delayed accounting
for climate change in their planning until the risks
are better known.
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Assuming that the risk of climate change to a
particular activity is a function of probability x
hazard, two methods of managing uncertainty
suggest a way past this impasse. (1) Developing
ranges of uncertainty for key drivers of change,
such as greenhouse gas emissions, climate
sensitivity and regional climate change and using
Bayesian methods of analysis to explore these
ranges. (2) Developing critical thresholds that mark
an unacceptable level of change beyond the current
coping range for a particular activity.

We aim to show how the limitations of individual
scenarios can be overcome by combining these two
methods to estimate the probability of exceeding a
given critical threshold. This paper illustrates these
methods using results from an assessment of
climate change on water resources in the
Macquarie River Catchment [Jones et al., 2001].
We present two critical thresholds based on
environmental flows and annual irrigation
allocations, carry out an uncertainty analysis and
apply a Bayesian analysis to assess the likelihood
of those thresholds being exceeded in 2030 and
2070.

2. MODEL STRUCTURE

CSIRO’s climate scenario generator, OzClim, was
coupled to the Integrated Quality Quantity Model
(IQQM) for the Macquarie River developed by the
NSW Department of Land and Water Conservation
(DLWC). IQQM consists of the Sacramento
rainfall-runoff model and river routing, water
demand and allocation routines to simulate river
flow, environmental flows to the Macquarie
Marshes and urban and irrigation water supply.

High quality scenarios of regional change as a
function of global warming (percent change per °C
of global warming) for potential evaporation (Ep)
and precipitation (P) were prepared from nine
global and regional climate models and applied to
OzClim. These were scaled by estimates of global
warming that take into account different rates of
greenhouse gas emissions and climate model
sensitivity for 2030 and 2070. Daily records of P
and Ep within IQQM were then modified
according to these scenarios, providing a record of
climate variability from 1890-1996. This series
includes a drought-dominated period (1890-1947)
and a flood-dominated period (1948-1996)
allowing different modes of decadal variability to
also be assessed. Multiple scenarios for 2030 and
2070 were applied to IQQM in batch mode to
explore the full range of uncertainty projected by
the Intergovernmental Panel on Climate Change
[IPCC, 2001] and CSIRO [CSIRO, 2001] for
climate change. The method of coupling is
described by Page and Jones [2001].

Three types of output were considered for risk
assessment: storage in the Burrendong Dam (the
major water storage), environmental flows to the
Macquarie Marshes (nesting events for the
breeding of colonial waterbirds), and proportion of
irrigation allocations met over time.

3. MODEL RESULTS
3.1. Climate Model Runs
Multiple climate change simulations were run:

e For 2030 based on the IS92a—f greenhouse gas
emissions scenarios, IPCC [1996] warmings,
nine climate models at low, moderate and high
climate sensitivity, for a total of 27
simulations.

¢ For 2070 based on the SRES greenhouse gas
emission scenarios, IPCC [2001] warmings,
nine climate models at low, moderate (2) and
high climate sensitivity for a total of 36
simulations.

The results produced changes to mean annual
storage in Burrendong Dam ranging from +1% to —
22% in 2030 and +6% to —55% in 2070. Allowing
for the higher IPCC [2001] warmings compared to
IPCC [1996], the updated results for 2030 are +1%
to —30%. Changes to flows into the Macquarie
Marshes are slightly more sensitive and irrigation
allocations are slightly less sensitive.

If we follow the definition of a scenario as being
plausible with no further probability we are
restricted to communicating these results as
follows: By incorporating the major input
uncertainties that can readily be quantified into
the analysis, changes to mean annual storage
range from 0% to —30% in 2030 and +5 to -55%
in 2070.

3.2. Transfer Functions

Uncertainty and risk analysis was carried out using
Monte Carlo random sampling, requiring a method
of rapid analysis. The simulations detailed above
supplied input data for regression relationships
relating P and Ep change (8Ep and 8P) with
streamflow. Results from eight models providing
56 samples were used (one model was rejected due
to errors affecting Ep calculations for June and
July). A non-linear inverse tangent function
produced the best physically realistic fit for the
distribution:

oflow = a x (atan (8Ep/8P)-b ) )

where SEp and 8P were measured in mm yr'! and
8flow in GL yr! and percent, and a and b are
constants. The results have a standard error ranging
from 1 to 2% (Table 1).
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Table 1. Regression relationships for Burrendong Dam storage and Macquarie Marsh inflows in GL and

irrigation allocations in percent.

Output a b R’ SE (%)
Burrendong storage (GL) — -98.96 80.10 0.98 1.75
Macquarie Marshes inflows (GL) -48.00 79.78 0.98 2.10
Trrigation allocations (change in %) -6.17 81.15 0.98 1.19

3.3. Probability Distributions

According to the central limit theorem of
statistics, if multiple ranges of uncertainty are
combined, then the central tendencies are
favoured at the expense of the extremes [e.g.
Wigley and Raper, 2001]. Three ranges of
uncertainty contributed to the analysis:
warming and regional SP and SEp. Monte Carlo
methods (repeated random sampling) were used to
sample the IPCC [2001] range of global warming
for 2030 and 2070. These were then used to scale
a range of change per °C of global warming on a
quarterly basis for P, sampling Ep using a
regression relationship  established  for the
Macquarie catchment [Jones et al., 2001]. The
quarterly changes for P and Ep were then totalled
to determine annual 8P and SEp. The transfer
function in Equation 1 was used to estimate the
probability distribution for Burrendong Dam
storage, Macquarie Marshes inflows and irrigation
allocations in 2030 and 2070.

The following assumptions were applied:

e The range of global warming in 2030 was
0.55-1.27°C with a uniform distribution. The
range of change in 2070 was 1.16-3.02°C.

e Changes in P were taken from the full range
of change for each quarter from the sample of
nine climate models.

e Changes in P for each quarter were assumed
to be independent of each other (seasonally
dependent changes between seasons could
not be found).

e The difference between samples in any
consecutive quarter could not exceed the
largest difference observed in the sample of
nine climate models.

e Ep was partially dependent on P (6Ep = 5.75
_ 0.538P, standard error = 2.00, randomly
sampled using a Gaussian distribution, units
in percent change).

Figure 1 shows the results for 2030 where the
probability distribution is tallied from wettest
(best) to driest (worst) outcomes. Although there
is an increased flood risk with increases, the drier
outcomes are considered worse in terms of lost
productivity and environmental function. The

global
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driest and wettest outcomes are less likely than the
central outcomes where the line is steepest. The
most likely outcomes range from about 0% to —
15% in 2030 and 0% to —35% in 2070 (not
shown).
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Figure 1. Probability distribution for changes to
mean annual Burrendong Dam storage, Macquarie
Marsh inflows and irrigation allocations based on
Monte Carlo sampling of input ranges of global
warming, OP and 3Ep in 2030.

Critical thresholds

A critical threshold marks the point at which an
activity or system faces an unacceptable level of
harm [Jones, 2001]. It delineates the coping range
of climate (i.e. the range of climate variability that
is considered normal and is easily managed) from
that part of the range where an activity is
vulnerable, providing a criterion or hazard by
which to measure risk. If a critical threshold can
be expressed in climatic terms and quantified
under climate change, it then becomes possible to
estimate risk if a probability distribution for the
climate inputs can be determined. Two critical
thresholds were established:

1. Bird breeding events in the Macquarie
Marshes, taken as 10 consecutive years of
inflows below 350 GL.

2. [Irrigation allocations falling below a level of
50% for five consecutive years.

Both thresholds are a measure of accumulated
stress rather than a single extreme event.

From the sample of runs described in section 3.1,
both thresholds were exceeded if mean annual
flows fell below 10% in a drought-dominated
climate, 20% in a normal climate and 30% in a
flood-dominated climate.



Table 2. Results of uncertainty analysis for water storage in Burrendong Dam in 2030 and
2070. The ranges shown are in percent change from mean annual storage in Burrendong

Dam.

2030 Limits of Range | Range | Contribution to Uncertainty

All +10.3 to —28.4 38.7

Constant global warming +7.7t0-21.4 29.1 25%

Constant P -1.9t0-15.9 14.0 64%

Constant Ep 7.2 t0 -26.7 33.9 12%
101%

2070

All +23.8 to —60.1 83.9

Constant global warming +17.3to —45.8 63.1 25%

Constant P —4.6 to-34.0 29.4 65%

Constant Ep 16.3to -57.7 74.0 12%
102%

4. UNCERTAINTY ANALYSIS

Uncertainty analysis was carried out to understand
how the component uncertainties contributed to
the range of outcomes. Three ranges of input
uncertainty, global warming and local changes in
P and Ep, were assessed by keeping each input
constant within a Monte Carlo assessment while
allowing the others free play, consistent with
Visser et al. [2000]. Global warming was held at
0.91°C in 2030 and 2.09°C in 2070. 8P was taken
as the average of the nine models in percent
change per °C global warming for each quarter.
OEp was linearly regressed from 8P, omitting the
sampling of a standard deviation. In both 2030
and 2070, 8P provides almost two-thirds of the
total uncertainty, global warming about 25% and
OEp just over 10% (Table 2).

The key climate change uncertainty for water
supply is 8P as a function of global warming.
Therefore, the direction and magnitude of rainfall
change is the important climate uncertainty for
water resources. The rate of global warming itself
is secondary and 8Ep as a function of both P and
global warming is least important. However, given
that SEp is likely to be easier than 8P to diagnose
due to its reduced variability, the rate of Ep
change may provide some indication of P change
through the inverse modelling of the co-dependent
P and Ep relationship.

5. BAYESIAN ANALYSIS

Bayesian analysis involves testing of input
assumptions on the resulting probabilities [e.g.
New and Hulme, 2000]. Two different sets of
assumptions were tested. 8P was sampled on a
six-monthly and annual basis to determine
whether the independent sampling of rainfall
changes on a quarterly basis affected the results.
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The effect of different probability distributions for
the input uncertainties was also tested.

Figure 2 shows the impact of quarterly, six
monthly and annual sampling on the probability
distribution for changes to mean annual
Burrendong storage in 2030. Also shown are the
individual scenarios, which are given equal
probability of occurring. The resultant probability
distributions for six-monthly and annual sampling
produce higher flows, but the results do not
change by more than 10% from the standard in
most cases. The probability distribution function
is relatively insensitive to changed seasonal
sampling strategies for P and Ep.

The next test was to determine this impact of a
non-uniform distribution of global warming,
compared to the uniform distribution used in
Section 3, on the results. Wigley and Raper
[2001] produced non-linear PDFs for global
warming in 2030 and 2070 based on input
uncertainties for the SRES emissions scenarios,
radiative uncertainties for greenhouse gases and
sulphate aerosol, atmospheric greenhouse gas
modelling and climate sensitivity with each range
having a log normal distribution. We applied
those ranges in 2030 and 2070 (Figures 3 and 4).

Altering the input PDF for global warming has
little effect on the results. This is consistent with
global warming forming only 25% of the input
uncertainties. Only very large changes in the range
or distribution of global warming would be
expected to significantly affect the outcome.

We also tested the effect of altered distributions of
rainfall change by applying cubic polynomial
regressions to the range provided by the nine
models, counting the lowest and highest sample as
the 10" and 90" percentile respectively (thereby
extending the range of rainfall change). These
were added to the non-linear Wigley and Raper



PDFs for global warming and are also shown in
Figures 3 and 4. Although the total ranges have
increased by 2% and 31% in 2030 and 20% and
55% in 2070 for the “W&R warming” and “All”
cases (Table 2), the PDFs remain fairly similar for
the major part of the range.
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Figure 2. Impact of scenario-based, quarterly

(Standard), six monthly and annual sampling of
8P and SEp on the probability distribution for
changes to mean annual Burrendong storage in
2030.
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Figure 3. Impact of the standard approach, non-
linear sampling of global warming [Wigley and
Raper, 2001] and non-linear sampling of rainfall
change (All) on the probability distribution for
changes to mean annual Burrendong storage in
2030. Critical thresholds under a drought-
dominated climate (D), flood-dominate climate
(F) and normal climate (N) are also shown.
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Figure 4. Impact of the standard approach, non-
linear sampling of global' warming [Wigley and
Raper, 2001} and non-linear sampling of rainfall
change (All) on the probability distribution for
changes to mean annual Burrendong storage in
2070. Critical thresholds under a drought-
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dominated climate (D), flood-dominate climate
(F) and normal climate (N) are also shown.

These results show that the “most likely” parts of
the ranges are not greatly expanded by increasing
the ranges of uncertainty by the amounts here. The
input ranges of uncertainty for rainfall for the
Macquarie catchment are about +4% per degree
of global warming [Jones et al., 2001]. These
would have to be expanded considerably to alter
the risk to water supply.

6. CONCLUSIONS

In this study, we applied scenarios from a sample
of nine climate models to the IQQM for the
Macquarie River catchment, scaling a long-term
historical daily climate of P and Ep (1890-1996)
by a range of climate changes in 2030 and 2070
consistent with IPCC projections [2001].
Relationships for 8P and 8Ep with Burrendong
Dam storage, Macquaric Marsh inflows and
irrigation allocations were established using 54
samples from 2030 and 2070. Monte Carlo
sampling has then allowed PDFs for these outputs
for 2030 and 2070 to be established.

Uncertainty analysis on the range of outcomes in
terms of flow changes are 25% for global
warming, 64% in terms of &P per °C global
warming and 12% of dEp per °C global warming.
Therefore, attribution of climate change in terms
of local rainfall change as a function of global
warming is the most important issue for narrowing
the range of uncertainty with regard to the risk
posed by climate change to water resources.

However, changes to decadal variability are
equally as important but are very ‘poorly
understood in terms of dynamics and diagnosis.
Critical thresholds for both irrigation and
environmental flows occur are exceeded with
mean changes in flow of —10% in a drought-
dominated climate, —20% in a normal climate and
_30% in a flood-dominated climate (Figures 3 and
4).

Bayesian analysis showed that the risk of
threshold exceedance is not changed greatly by
altering the input assumptions for rainfall or
global warming. The “pest bet” changes to
Burrendong Dam storage, Macquarie Marsh
inflows and irrigation allocations in 2030 are 0%
to —15%, and in 2070 are 0% to -35%. However,
in 2030 critical thresholds are likely to be
exceeded by 20-30% in a drought-dominated
climate, <1% in a normal climate and <<1% in a
flood-dominated climate. In 2070, these risks are
70-80%, 35-50% and 10-20% respectively.
Considerable hardship would be experienced
before these thresholds are crossed. The most



optimal strategies are hedging risk through the
preparation of adaptation strategies to manage the
most likely range of outcomes, and monitoring
climate to determine whether changes are likely to
result in critical threshold exceedance.
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